Table 2 Molecular subtypes classification performances using LFs learned via supervised VAE/MMD-VAE.

From: Integrated multi-omics analysis of ovarian cancer using variational autoencoders

Method

Omics_data

Accuracy

Precision

Recall

f1 score

V-VAE

CNV

58.3 ± 0.3

0.63 ± 0.01

0.58 ± 0.03

0.579 ± 0.03

MMD-VAE

CNV

54.3 ± 0.31

0.58 ± 0.02

0.54 ± 0.02

0.53 ± 0.03

V-VAE

mRNA

95.7 ± .5

0.95 ± 0.008

0.95 ± 0.05

0.95 ± 0.006

MMD-VAE

mRNA

93.8 ± .97

0.93 ± 0.006

0.93 ± 0.005

0.93 ± 0.006

V-VAE

Methylation

72.3 ± .8

0.73 ± 0.02

0.72 ± 0.009

0.71 ± 0.006

MMD-VAE

Methylation

75.2 ± .9

0.75 ± 0.019

0.75 ± 0.018

0.75 ± 0.015

V-VAE

CNV_mRNA

93.7 ± .27

0.93 ± 0.01

0.93 ± 0.008

0.93 ± 0.007

MMD-VAE

CNV_mRNA

93.7 ± .37

0.94 ± 0.006

0.93 ± 0.007

0.93 ± 0.007

V-VAE

mRNA_methylation

87.1 ± 1.1

0.87 ± 0.009

0.87 ± 0.008

0.87 ± 0.005

MMD-VAE

mRNA_methylation

93.2 ± .97

0.93 ± 0.02

0.93 ± 0.008

0.93 ± 0.005

V-VAE

CNV_mRNA_methylation

89.4 ± .6

0.89 ± 0.02

0.89 ± 0.006

0.89 ± 0.004

MMD-VAE

CNV_mRNA_methylation

95.5 ± .37

0.95 ± 0.02

0.95 ± 0.008

0.95 ± 0.009