Table 4 The proposed InfoGAN structure.

From: Estimating the phase volume fraction of multi-phase steel via unsupervised deep learning

Generator network (\(G\))

Discriminator network (\(D\))

Auxiliary network (\(Q\))

Layer

Type

Dimension

Layer

Type

Dimension

Layer

Type

Dimension

Input

Latent (\(z\)) + Code (\(c\))

4 + 4

Input

Feature

19

Input

Hidden layer

50

Hidden 1

Dense layer

50

Hidden 1

Dense layer

100

Hidden 1

Dense layer

50

ReLU activation

–

ReLU activation

–

ReLU activation

–

Hidden 2

Dense layer

50

Hidden 2

Dense layer

50

Hidden 2

Dense layer

20

ReLU activation

–

ReLU activation

–

ReLU activation

–

Output

Dense layer

19

Output

Dense layer

1

Output

Dense layer

4

Linear activation

–

Sigmoid activation

 

Softmax activation

–

  1. Each network holds two hidden layers but with a varying number of nodes. Input to the auxiliary network is the output of the second hidden layer in the discriminator.