Table 3 Accuracies(%) obtained by applying Inception-ResNet-V2, VGG19, ResNet152, DenseNet201, Xception, MobileNetV2 models for both raw and edge-mapped images.

From: RETRACTED ARTICLE: GraphCovidNet: A graph neural network based model for detecting COVID-19 from CT scans and X-rays of chest

Model

SARS-COV-2 Ct-Scan Dataset

COVID-CT dataset

covid-chestxray-dataset + Chest X-Ray Images (Pneumonia) dataset

CMSC-678-ML-Project GitHub (3-class)

CMSC-678-ML-Project GitHub (4-class)

Raw image

Edge image

Raw image

Edge image

Raw image

Edge image

Raw image

Edge image

Raw image

Edge image

Inception-ResNet-V2

77.85

80.08

74.35

78.95

98.22

98.05

82.61

91.3

77.56

86.45

VGG19

78.27

82.55

79.60

84.27

98.45

96.50

86.96

97.83

79.65

92.2

ResNet152

77.87

84.58

86.65

87.97

98.68

97.82

91.31

91.40

86.13

85.88

DenseNet201

75.86

85.69

89.11

90.21

99.07

97.35

95.65

96.13

88.65

90.44

Xception

83.30

81.79

82.01

87.58

96.74

99.22

82.61

86.96

82.15

83.97

MobileNetV2

77.46

80.48

78.18

76.97

98.76

98.52

93.48

84.74

81.45

82.25