Table 7 Comparison between references (expert pathologists), and our method on slide-level tasks using the EfficientNet-B3 architecture, including the consensus ground truth (with 8% of the dataset removed).

From: Overcoming the limitations of patch-based learning to detect cancer in whole slide images

Reference

Target

Dice (% over-lap)

Error in \(\sqrt{{d}_{1}{d}_{2}}\)

Cfs. mtx

P#1

CNN

64

2.12

\(\left(\begin{array}{cc}6& 0\\ 0& 20\end{array}\right)\)

P#2

74

2.20

\(\left(\begin{array}{cc}6& 0\\ 0& 20\end{array}\right)\)

P#3

79

1.75

\(\left(\begin{array}{cc}6& 0\\ 0& 20\end{array}\right)\)

P#2

CNN

66

3.06

\(\left(\begin{array}{cc}6& 0\\ 0& 20\end{array}\right)\)

P#3

81

1.63

\(\left(\begin{array}{cc}6& 0\\ 0& 20\end{array}\right)\)

P#3

CNN

67

1.86

\(\left(\begin{array}{cc}6& 0\\ 0& 20\end{array}\right)\)

Consen-sus

CNN

66

2.33

\(\left(\begin{array}{cc}6& 1\\ 0& 19\end{array}\right)\)

P#1

73

1.65

\(\left(\begin{array}{cc}6& 1\\ 0& 19\end{array}\right)\)

P#2

88

0.79

\(\left(\begin{array}{cc}6& 1\\ 0& 19\end{array}\right)\)

P#3

79

1.48

\(\left(\begin{array}{cc}6& 1\\ 0& 19\end{array}\right)\)

  1. P#* indicates the expert ID, and CNN is the trained network to segment the tumor bed automatically. In all experiments, we use K-means negative sampling, 256 as the tile stride, and color jittering and affine transformations as data augmentation.