Table 1 Theoretically predicted asymptotic configurations of a three-leaf star network for four different possibilities of the hub frequency to fall into different frequency intervals of the leaves.

From: Multistability in a star network of Kuramoto-type oscillators with synaptic plasticity

\(\omega _{0}<\omega _{1}\)

\((0\,0\,0)\)

\((0\,0\,1_{{\mathrm {H}}})\)

\((0\,1_{{\mathrm {H}}}0)\)

\((0\,1_{{\mathrm {L}}}1_{{\mathrm {H}}})\)

\((1_{{\mathrm {H}}}0\,0)\)

\((1_{{\mathrm {L}}}0\,1_{{\mathrm {H}}})\)

\((1_{{\mathrm {L}}}1_{{\mathrm {H}}}0)\)

\((1_{{\mathrm {L}}}1_{{\mathrm {L}}}1_{{\mathrm {H}}})\)

\(\omega _{1}<\omega _{0}<\omega _{2}\)

\((0\,0\,0)\)

\((0\,0\,1_{{\mathrm {H}}})\)

\((0\,1_{{\mathrm {H}}}0)\)

\((0\,1_{{\mathrm {L}}}1_{{\mathrm {H}}})\)

\((1_{{\mathrm {L}}}0\,0)\)

\((1_{{\mathrm {L}}}0\,1_{{\mathrm {H}}})\)

\((1_{{\mathrm {L}}}1_{{\mathrm {H}}}0)\)

\((1_{{\mathrm {L}}}1_{{\mathrm {L}}}1_{{\mathrm {H}}})\)

\(\omega _{2}<\omega _{0}<\omega _{3}\)

\((0\,0\,0)\)

\((0\,0\,1_{{\mathrm {H}}})\)

\((0\,1_{{\mathrm {L}}}0)\)

\((0\,1_{{\mathrm {L}}}1_{{\mathrm {H}}})\)

\((1_{{\mathrm {L}}}0\,0)\)

\((1_{{\mathrm {L}}}0\,1_{{\mathrm {H}}})\)

\((1_{{\mathrm {L}}}1_{{\mathrm {L}}}0)\)

\((1_{{\mathrm {L}}}1_{{\mathrm {L}}}1_{{\mathrm {H}}})\)

\(\omega _{3}<\omega _{0}\)

\((0\,0\,0)\)

 \((0\,0\,1_{{\mathrm {L}}})\)

\((0\,1_{{\mathrm {L}}}0)\)

\((0\,1_{{\mathrm {L}}}1_{{\mathrm {L}}})\)

\((1_{{\mathrm {L}}}0\,0)\)

\((1_{{\mathrm {L}}}0\,1_{{\mathrm {L}}})\)

\((1_{{\mathrm {L}}}1_{{\mathrm {L}}}0)\)

\((1_{{\mathrm {L}}}1_{{\mathrm {L}}}1_{{\mathrm {L}}})\)

  1. The first column lists the possible inequalities for the hub frequency, and the next eight columns show the codes of the corresponding allowed configurations.