Table 1 Theoretically predicted asymptotic configurations of a three-leaf star network for four different possibilities of the hub frequency to fall into different frequency intervals of the leaves.
From: Multistability in a star network of Kuramoto-type oscillators with synaptic plasticity
\(\omega _{0}<\omega _{1}\) | \((0\,0\,0)\) | \((0\,0\,1_{{\mathrm {H}}})\) | \((0\,1_{{\mathrm {H}}}0)\) | \((0\,1_{{\mathrm {L}}}1_{{\mathrm {H}}})\) | \((1_{{\mathrm {H}}}0\,0)\) | \((1_{{\mathrm {L}}}0\,1_{{\mathrm {H}}})\) | \((1_{{\mathrm {L}}}1_{{\mathrm {H}}}0)\) | \((1_{{\mathrm {L}}}1_{{\mathrm {L}}}1_{{\mathrm {H}}})\) |
\(\omega _{1}<\omega _{0}<\omega _{2}\) | \((0\,0\,0)\) | \((0\,0\,1_{{\mathrm {H}}})\) | \((0\,1_{{\mathrm {H}}}0)\) | \((0\,1_{{\mathrm {L}}}1_{{\mathrm {H}}})\) | \((1_{{\mathrm {L}}}0\,0)\) | \((1_{{\mathrm {L}}}0\,1_{{\mathrm {H}}})\) | \((1_{{\mathrm {L}}}1_{{\mathrm {H}}}0)\) | \((1_{{\mathrm {L}}}1_{{\mathrm {L}}}1_{{\mathrm {H}}})\) |
\(\omega _{2}<\omega _{0}<\omega _{3}\) | \((0\,0\,0)\) | \((0\,0\,1_{{\mathrm {H}}})\) | \((0\,1_{{\mathrm {L}}}0)\) | \((0\,1_{{\mathrm {L}}}1_{{\mathrm {H}}})\) | \((1_{{\mathrm {L}}}0\,0)\) | \((1_{{\mathrm {L}}}0\,1_{{\mathrm {H}}})\) | \((1_{{\mathrm {L}}}1_{{\mathrm {L}}}0)\) | \((1_{{\mathrm {L}}}1_{{\mathrm {L}}}1_{{\mathrm {H}}})\) |
\(\omega _{3}<\omega _{0}\) | \((0\,0\,0)\) | Â \((0\,0\,1_{{\mathrm {L}}})\) | \((0\,1_{{\mathrm {L}}}0)\) | \((0\,1_{{\mathrm {L}}}1_{{\mathrm {L}}})\) | \((1_{{\mathrm {L}}}0\,0)\) | \((1_{{\mathrm {L}}}0\,1_{{\mathrm {L}}})\) | \((1_{{\mathrm {L}}}1_{{\mathrm {L}}}0)\) | \((1_{{\mathrm {L}}}1_{{\mathrm {L}}}1_{{\mathrm {L}}})\) |