Table 5 Accuracy and precision metrics for multimodal benchmark functions with N = 30, Tmax = 1000 and Texp = 30.

From: Three novel quantum-inspired swarm optimization algorithms using different bounded potential fields

Function

Metrics

QPSO-LR

QPSO-RM

QPSO-CS

PSO

FFO

GA

\(f_{9}\)

\(\omega\)

\(1.4137 \times 10^{2}\)

\(1.4873 \times 10^{2}\)

\(1.3877 \times 10^{2}\)

\(2.6002 \times 10^{2}\)

90.5291

\(1.8003 \times 10^{2}\)

\(\alpha\)

6.0517

6.7619

0.8768

28.8637

80.4336

90.3119

\(f_{10}\)

\(\omega\)

7.1803

9.1616

6.6542

2.4200

7.2001

14.7343

\(\alpha\)

0.6570

1.1580

0.7452

0.0361

0.4907

6.6963

\(f_{11}\)

\(\omega\)

0.3426

0.3647

0.3127

0.2036

0.0001

0.0516

\(\alpha\)

0.0116

0.0167

\(1.688 \times 10^{- 4}\)

0.0045

0.0001

19.2122

\(f_{12}\)

\(\omega\)

12.9950

14.1370

15.6384

5.2224

4.3928

30.8202

\(\alpha\)

2.9750

3.7139

2.5028

0.0400

0.0820

19.2122

\(f_{13}\)

\(\omega\)

\(1.0457 \times 10^{7}\)

\(8.9922 \times 10^{6}\)

\(1.3693 \times 10^{7}\)

\(1.2975 \times 10^{6}\)

\(9.9214 \times 10^{6}\)

\(4.5856 \times 10^{7}\)

\(\alpha\)

\(4.6454 \times 10^{6}\)

\(4.2749 \times 10^{6}\)

\(3.1766 \times 10^{6}\)

\(2.7464 \times 10^{3}\)

\(2.8049 \times 10^{5}\)

\(4.1327 \times 10^{7}\)

\(f_{14}\)

\(\omega\)

\(1.9438 \times 10^{7}\)

\(1.9614 \times 10^{7}\)

\(2.7256 \times 10^{7}\)

\(3.4698 \times 10^{6}\)

\(1.6631 \times 10^{7}\)

\(7.3698 \times 10^{7}\)

\(\alpha\)

\(7.4400 \times 10^{6}\)

\(8.2036 \times 10^{6}\)

\(7.1400 \times 10^{6}\)

\(1.3277 \times 10^{4}\)

\(5.1217 \times 10^{5}\)

\(6.1365 \times 10^{7}\)

\(f_{15}\)

\(\omega\)

1.4280

1.6201

1.3598

0.5925

1.3838

2.7137

\(\alpha\)

0.2589

0.1861

0.0947

0.0103

0.0773

1.2823