Table 7 The positive and negative distances of decision bodies B by \(A_{1}\).

From: Two-sided matching based on I-BTM and LSGDM applied to high-level overseas talent and job fit problems

 

\(C_{1}\)

\(C_{2}\)

\(C_{3}\)

\(C_{4}\)

\(C_{5}\)

\(B_{1}\)

(4.0000, 0.0000)

(4.0000, 0.0000)

(3.9464, 0.0000)

(4.0000, 0.0000)

(4.0000, 0.0000)

\(B_{2}\)

(1.2619, 3.7856)

(2.0000, 3.9464)

(1.8155, 3.7248)

(2.3928, 3.4723)

(1.2619, 3.7248)

\(B_{3}\)

(0.0000, 3.9464)

(1.2169, 3.7856)

(2.3928, 3.4723)

(0.0000, 3.6546)

(0.0000, 3.9464)

\(B_{4}\)

(2.3928, 3.7248)

(0.0000, 4.0000)

(0.0000, 3.7856)

(1.2169, 4.0000)

(1.8155, 3.4723)

\(B_{5}\)

(2.8284, 3.4723)

(2.3928, 3.7284)

(2.3928, 3.1789)

(1.6681, 2.8284)

(2.3928, 3.1789)

\(B_{6}\)

(3.1789, 2.8284)

(2.8284, 3.1789)

(2.8284, 3.1789)

(1.2619, 2.9222)

(2.8284, 2.9299)

\(B_{7}\)

(3.4723, 2.0000)

(3.7248, 2.5237)

(3.5425, 1.8155)

(2.2105, 2.0000)

(3.2619, 2.0000)

\(B_{8}\)

(3.1789, 2.5237)

(3.2619, 2.3928)

(3.0733, 3.1789)

(1.5665, 3.2169)

(3.3894, 2.3928)

\(B_{9}\)

(3.5425, 2.5129)

(3.4723, 2.6975)

(3.4723, 2.5129)

(1.9170, 2.0000)

(3.2619, 2.8284)

\(B_{10}\)

(2.8284, 2.0000)

(2.9299, 2.2083)

(2.6975, 3.1789)

(1.2619, 3.1789)

(2.9299, 1.8155)