Table 1 Results of the simulation-based optimisation in three datasets.

From: Simulation-based optimisation to quantify heterogeneity of specific ventilation and perfusion in the lung by the Inspired Sinewave Test

Characteristic

Animal

Human

Noninjured

Injured

p

Healthy

COPD

p

\(\mathrm{E}\mathrm{L}\mathrm{V}\left(\mathrm{L}\right)\)

1.23 (0.54)

0.86 (0.47)

< 0.01

2.3 (0.4)

2.0 (0.5)

< 0.05

\({\mathrm{Q}}_{\mathrm{P}}\left(\mathrm{L}/\mathrm{m}\mathrm{i}\mathrm{n}\right)\)

2.9 (0.9)

3.2 (1.0)

ns

4.9 (1.8)

4.8 (2.0)

ns

\({\mathrm{\mu }}_{\mathrm{V}}\)

1.08 (0.23)

1.14 (0.34)

ns

1.14 (0.32)

1.11 (0.36)

ns

\({\mathrm{\sigma }}_{\mathrm{V}}\)

0.20 (0.04)

0.31 (0.10)

< 0.0001

0.71 (0.16)

0.89 (0.33)

< 0.01

\({\mathrm{\mu }}_{\mathrm{P}}\)

1.02 (0.33)

1.15 (0.41)

ns

1.21 (0.44)

1.22 (0.31)

ns

\({\mathrm{\sigma }}_{\mathrm{p}}\)

0.28 (0.11)

0.27 (0.19)

ns

1.01 (0.28)

1.2 (0.28)

< 0.001

  1. Mean and standard deviation are shown. \(ELV\): Effective lung volume; \({Q}_{P}\): pulmonary blood flow; \({\mu }_{V}\) and \({\sigma }_{V}\): mean and standard deviation of the ventilation lognormal distribution;\({\mu }_{P}\) and \({\sigma }_{P}\): mean and standard deviation of the perfusion lognormal distribution. Student’s t test was applied with ns = non-significant.