Table 3 Performance of the mortality prediction models in Non-ST-segment elevation myocardial infarction using the traditional features.
| Â | AUC (95% CI) | Specificity | Sensitivity | Accuracy | F1-score |
|---|---|---|---|---|---|
In-hospital mortality | |||||
Machine learning algorithms | |||||
LR with Lasso | 0.886 (0.855–0.918) | 0.793 | 0.818 | 0.794 | 0.236 |
LR with Ridge | 0.885 (0.852–0.918) | 0.810 | 0.758 | 0.808 | 0.235 |
LR with Elastic net | 0.886 (0.854–0.918) | 0.791 | 0.803 | 0.792 | 0.230 |
RF | 0.889 (0.856–0.923) | 0.793 | 0.758 | 0.792 | 0.220 |
SVM | 0.760 (0.707–0.813) | 0.709 | 0.667 | 0.707 | 0.150 |
XGBoost | 0.888 (0.857–0.919) | 0.785 | 0.803 | 0.786 | 0.226 |
Traditional and modified traditional model | |||||
TIMI | 0.669 (0.613–0.724) | 0.686 | 0.576 | 0.682 | 0.123 |
GRACE | 0.873 (0.840–0.906) | 0.734 | 0.803 | 0.736 | 0.191 |
ACTION-GWTG | 0.871 (0.836–0.907) | 0.812 | 0.712 | 0.808 | 0.224 |
Modified TIMI* | 0.709 (0.656–0.763) | 0.506 | 0.788 | 0.516 | 0.112 |
Modified GRACE* | 0.876 (0.841–0.912) | 0.806 | 0.773 | 0.805 | 0.235 |
Modified ACTION-GWTG* | 0.884 (0.851–0.916) | 0.819 | 0.758 | 0.817 | 0.243 |
3Â month mortality | |||||
Machine learning algorithms | |||||
LR with Lasso | 0.849 (0.795–0.903) | 0.728 | 0.833 | 0.731 | 0.127 |
LR with Ridge | 0.826 (0.764–0.889) | 0.719 | 0.833 | 0.722 | 0.124 |
LR with Elastic net | 0.849 (0.795–0.904) | 0.735 | 0.833 | 0.738 | 0.130 |
RF | 0.799 (0.719–0.878) | 0.681 | 0.778 | 0.683 | 0.104 |
SVM | 0.715 (0.633–0.798) | 0.557 | 0.778 | 0.562 | 0.077 |
XGBoost | 0.824 (0.760–0.888) | 0.654 | 0.861 | 0.659 | 0.106 |
Traditional and modified traditional model | |||||
TIMI | 0.672 (0.592–0.751) | 0.689 | 0.528 | 0.685 | 0.073 |
GRACE | 0.777 (0.711–0.844) | 0.705 | 0.694 | 0.704 | 0.100 |
ACTION-GWTG | 0.795 (0.728–0.862) | 0.726 | 0.750 | 0.727 | 0.114 |
Modified TIMI* | 0.675 (0.596–0.754) | 0.534 | 0.750 | 0.539 | 0.071 |
Modified GRACE* | 0.774 (0.709–0.838) | 0.623 | 0.778 | 0.627 | 0.089 |
Modified ACTION-GWTG* | 0.782 (0.721–0.843) | 0.759 | 0.639 | 0.756 | 0.110 |
12Â month mortality | |||||
Machine learning algorithms | |||||
LR with Lasso | 0.860 (0.825–0.895) | 0.693 | 0.901 | 0.703 | 0.219 |
LR with Ridge | 0.858 (0.821–0.894) | 0.710 | 0.859 | 0.717 | 0.219 |
LR with Elastic net | 0.859 (0.824–0.894) | 0.721 | 0.845 | 0.727 | 0.222 |
RF | 0.836 (0.796–0.876) | 0.688 | 0.803 | 0.694 | 0.195 |
SVM | 0.729 (0.675–0.784) | 0.625 | 0.746 | 0.631 | 0.157 |
XGBoost | 0.851 (0.817–0.884) | 0.725 | 0.845 | 0.731 | 0.225 |
Traditional and modified traditional model | |||||
TIMI | 0.675 (0.619–0.731) | 0.695 | 0.549 | 0.688 | 0.140 |
GRACE | 0.808 (0.764–0.852) | 0.697 | 0.789 | 0.701 | 0.196 |
ACTION-GWTG | 0.790 (0.740–0.839) | 0.719 | 0.718 | 0.719 | 0.191 |
Modified TIMI* | 0.729 (0.683–0.776) | 0.545 | 0.845 | 0.559 | 0.150 |
Modified GRACE* | 0.820 (0.779–0.861) | 0.715 | 0.761 | 0.717 | 0.199 |
Modified ACTION-GWTG* | 0.808 (0.768–0.848) | 0.739 | 0.732 | 0.739 | 0.206 |