Table 4 Performance of the mortality prediction models tested in the Korean Acute Myocardial Infarction Registry-National Institutes of Health.
| Â | STEMI | NSTEMI | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
AUC (95% CI) | Specificity | Sensitivity | Accuracy | F1-score | AUC (95% CI) | Specificity | Sensitivity | Accuracy | F1-score | |
In-hospital mortality | In-hospital mortality | |||||||||
Machine learning algorithms | Machine learning algorithms | |||||||||
LR with Lasso | 0.923 (0.897–0.948) | 0.877 | 0.807 | 0.876 | 0.124 | 0.916 (0.891–0.941) | 0.848 | 0.787 | 0.847 | 0.096 |
LR with Ridge | 0.923 (0.898–0.948) | 0.755 | 0.982 | 0.757 | 0.081 | 0.918 (0.894–0.942) | 0.868 | 0.770 | 0.867 | 0.107 |
LR with Elastic net | 0.923 (0.898–0.948) | 0.884 | 0.754 | 0.883 | 0.123 | 0.917 (0.893–0.941) | 0.845 | 0.803 | 0.845 | 0.096 |
RF | 0.924 (0.897–0.952) | 0.815 | 0.860 | 0.816 | 0.092 | 0.924 (0.903–0.946) | 0.860 | 0.803 | 0.860 | 0.106 |
SVM | 0.875 (0.844–0.907) | 0.772 | 0.807 | 0.773 | 0.072 | 0.848 (0.815–0.880) | 0.723 | 0.852 | 0.725 | 0.060 |
XGBoost | 0.938 (0.920–0.955) | 0.855 | 0.860 | 0.855 | 0.114 | 0.911 (0.885–0.937) | 0.832 | 0.787 | 0.832 | 0.088 |
Traditional model | Traditional model | |||||||||
TIMI | 0.866 (0.820–0.913) | 0.774 | 0.807 | 0.774 | 0.072 | 0.672 (0.612–0.731) | 0.693 | 0.590 | 0.692 | 0.038 |
GRACE | 0.921 (0.891–0.950) | 0.851 | 0.825 | 0.850 | 0.107 | 0.917 (0.890–0.944) | 0.799 | 0.852 | 0.800 | 0.081 |
12-month mortality | 12-month mortality | |||||||||
Machine learning algorithms | Machine learning algorithms | |||||||||
LR with Lasso | 0.789 (0.719–0.860) | 0.751 | 0.696 | 0.750 | 0.048 | 0.815 (0.781–0.848) | 0.727 | 0.720 | 0.726 | 0.100 |
LR with Ridge | 0.789 (0.718–0.859) | 0.636 | 0.761 | 0.637 | 0.037 | 0.809 (0.774–0.843) | 0.735 | 0.695 | 0.735 | 0.099 |
LR with Elastic net | 0.789 (0.721–0.858) | 0.721 | 0.696 | 0.721 | 0.044 | 0.814 (0.780–0.847) | 0.749 | 0.695 | 0.748 | 0.104 |
RF | 0.772 (0.702–0.843) | 0.572 | 0.826 | 0.575 | 0.034 | 0.792 (0.751–0.832) | 0.746 | 0.703 | 0.745 | 0.104 |
SVM | 0.687 (0.606–0.768) | 0.425 | 0.804 | 0.429 | 0.025 | 0.721 (0.676–0.765) | 0.662 | 0.695 | 0.663 | 0.080 |
XGBoost | 0.796 (0.736–0.857) | 0.701 | 0.717 | 0.701 | 0.042 | 0.808 (0.773–0.843) | 0.783 | 0.653 | 0.781 | 0.111 |
Traditional model | Traditional model | |||||||||
TIMI | 0.701 (0.633–0.769) | 0.624 | 0.804 | 0.626 | 0.038 | 0.676 (0.635–0.717) | 0.693 | 0.590 | 0.692 | 0.038 |
GRACE | 0.738 (0.671–0.806) | 0.650 | 0.761 | 0.651 | 0.038 | 0.778 (0.741–0.814) | 0.799 | 0.852 | 0.800 | 0.081 |