Table 2 Estimates of the parameters of statistical distribution for SFC.

From: Statistical modeling for bioconvective tangent hyperbolic nanofluid towards stretching surface with zero mass flux condition

  

SFC

  

Nr

  

0

1

2

3

4

5

FD

\({\hat{\alpha }}\)

1.568950

1.812761

2.048765

2.277253

2.498126

2.711093

\({\hat{\beta }}\)

3.249076

3.819011

4.407746

5.023453

5.674475

6.370279

\({\hat{\eta }}_{1}\)

2.340444

9.769603

14.49602

61.68615

-3.898806

8.543967

AGT-II

\({\hat{\delta }}_{1}\)

1.980203

2.195986

9.106387

38.38976

173.47197

565.10015

\({\hat{\eta }}_{2}\)

3.249075

3.820303

4.407449

5.008879

37.15317

23.634421

\({\hat{\delta }}_{2}\)

3.249069

14.637496

4.408063

32.58794

5.630879

6.353374

GT-II

\({\hat{\eta }}\)

3.249075

3.818910

4.404736

4.949803

4.720524

4.381971

\({\hat{\delta }}\)

4.320648

9.696103

23.54969

58.52508

73.90224

75.942714

Weibull

\({\hat{\lambda }}\)

4.038674

4.644257

5.278253

5.950158

6.670540

7.452207

\({\hat{\beta }}\)

2.126016

2.354407

2.574283

2.785597

2.988088

3.181357

\({\hat{\alpha }}\)

27.63889

0.0636608

0.1125029

0.182326

0.2705209

0.3647409

MFD

\({\hat{\beta }}\)

0.847507

-1.6221723

-2.2936863

-3.249356

-4.5623501

-6.2105315

\({\hat{\lambda }}\)

1.480263

2.8919409

3.1625153

3.528906

3.9943797

4.5362588

RD

\({\hat{\sigma }}\)

1.412951

1.564143

1.712606

1.857528

1.998237

2.134108