Table 3 Estimates of the parameters of statistical distribution for LNN.

From: Statistical modeling for bioconvective tangent hyperbolic nanofluid towards stretching surface with zero mass flux condition

  

LNN

  

Nt

  

6

7

8

9

10

11

FD

\({\hat{\alpha }}\)

9.140826

25.54203

63.89860

144.3362

299.1832

577.6288

\({\hat{\beta }}\)

19.18480

22.74168

27.43727

32.98885

39.12873

45.97684

\({\hat{\eta }}_{1}\)

78.15356

99.97835

144.78854

213.8291

135.2225

9.497816

AGT-II

\({\hat{\delta }}_{1}\)

97.92131

84.87295

137.58036

206.7033

125.0395

2.050675

\({\hat{\eta }}_{2}\)

2.394169

1.733487

1.373428

1.243163

0.987689

3.005450

\({\hat{\delta }}_{2}\)

2.398008

1.618335

1.434913

1.247597

0.993976

1.217642

GT-II

\({\hat{\eta }}\)

2.171243

1.453281

1.202308

0.972356

0.827369

0.740383

\({\hat{\delta }}\)

101.4447

94.73049

125.691247

106.4941

87.12970

85.61986

Weibull

\({\hat{\lambda }}\)

3.618602

4.251510

5.089174

6.074484

7.143974

1.756068

\({\hat{\beta }}\)

10.66843

29.12578

71.293623

158.2191

325.7668

369.0693

\({\hat{\alpha }}\)

0.025798

0.036827

0.05373844

1.331674

1.0511818

4.845107

MFD

\({\hat{\beta }}\)

-2.746046

-3.022394

-3.55584431

-7.889381

-7.8376355

-12.11829

\({\hat{\lambda }}\)

1.7597250

0.773008

0.39368449

0.256016

0.1480056

0.100307

RD

\({\hat{\sigma }}\)

420.0692

3313.579

1140.704

338.1586

432.1877

419.0887