Table 4 Estimates of the parameters of statistical distribution for LDMM.

From: Statistical modeling for bioconvective tangent hyperbolic nanofluid towards stretching surface with zero mass flux condition

  

LDMM

  

Lb

  

1

2

3

4

F-D

\({\hat{\alpha }}\)

3.875291

4.192726

4.498246

4.795930

\({\hat{\beta }}\)

0.981468

1.053006

1.122236

1.188403

\({\hat{\eta }}_{1}\)

1.890055

2.260506

2.702876

3.220559

AGT-II

\({\hat{\delta }}_{1}\)

1.890055

2.260506

2.702876

3.220559

\({\hat{\eta }}_{2}\)

0.981294

1.052955

1.122235

1.188242

\({\hat{\delta }}_{2}\)

0.981294

1.052955

1.122225

1.188242

GT-II

\({\hat{\eta }}\)

0.981294

1.052957

1.122196

1.188337

\({\hat{\delta }}\)

3.780108

4.521043

5.406437

6.443316

Weibull

\({\hat{\lambda }}\)

1.663800

1.725847

1.786556

1.845495

\({\hat{\beta }}\)

9.108319

9.423109

9.734224

10.03794

\({\hat{\alpha }}\)

58.31327

79.70721

73.15271

89.53789

MFD

\({\hat{\beta }}\)

0.336251

0.332175

0.358084

0.359264

\({\hat{\lambda }}\)

0.161677

0.165079

0.162227

0.163958

RD

\({\hat{\sigma }}\)

6.710372

6.880247

7.050128

7.217048