Table 7 The resulting precision, recall, and f1-score values for Scenario 4 (training the algorithms with the training dataset of Japan and testing on the Taiwan, China, Japan, and all test datasets separately).

From: A comprehensive transferability evaluation of U-Net and ResU-Net for landslide detection from Sentinel-2 data (case study areas from Taiwan, China, and Japan)

  

U-Net

  

ResU-Net

 

Size

32

64

128

32

64

128

Precision

44.13

32.01

48.56

42.16

61.03

41.14

Recall

56.46

66.64

56.97

57.31

47.01

63.58

F1-score

49.54

43.25

52.43

48.58

53.11

49.95

Precision

28.75

21.72

35.17

27.07

42.34

29.58

Recall

51.46

80.87

59.38

52.51

24.7

73.95

F1-score

36.89

34.24

44.17

35.73

31.2

42.26

Precision

63.52

63.46

67.96

67.47

71.82

62.95

Recall

80.18

78.3

74.18

73.55

74.88

73.55

F1-score

70.89

70.1

70.93

70.38

73.32

67.84

Precision

67.58

66.44

70.89

66.53

69.85

68.91

Recall

58.51

53.89

53.85

59.36

62.79

54.35

F1-score

62.72

59.51

61.21

62.74

66.13

60.77

Algorithms trained by sample from

All

Taiwan

China

Japan

  1. The highest values of precision, recall, and f1-score are indicated in bold.