Table 1 The test results
From: Quantum private set intersection cardinality based on bloom filter
\(x_i\) | \(y_i\) | Alice | Bob | The state after doing operators | Test base | The probability of test results | |
|---|---|---|---|---|---|---|---|
\(|0'\rangle\) | \(|1'\rangle\) | ||||||
1 | 1 | \(\sigma _x\) | \(\sigma _z\) | \(sin\theta |0\rangle -cos\theta |1\rangle\) | \(\{|0'\rangle ,|1'\rangle \}\) | – | 1 |
1 | 0 | \(\sigma _x\) | I | \(sin\theta |0\rangle +cos\theta |1\rangle\) | \(\{|0'\rangle ,|1'\rangle \}\) | \(4cos\theta ^2sin\theta ^2\) | \((cos\theta ^2-sin\theta ^2)^2\) |
0 | 1 | I | \(\sigma _x\) | \(cos\theta |0\rangle -sin\theta |1\rangle\) | \(\{|0'\rangle ,|1'\rangle \}\) | \((cos\theta ^2-sin\theta ^2)^2\) | \(4cos\theta ^2sin\theta ^2\) |
0 | 0 | I | I | \(cos\theta |0\rangle +sin\theta |1\rangle\) | \(\{|0'\rangle ,|1'\rangle \}\) | 1 | – |