Table 6 Configurations of CNN, CWNN experiments.

From: Research on improved convolutional wavelet neural network

No.

Parameter type

Parameter name

CNN

CWNN

1

1st to 5th layers

First type of NN

CPNN

CPNN

2

2nd, 4th layers

Activation function of convolutional layer

Sigmoid

Sigmoid

3

1st layer

Dimension of the 1st layer

\(28\times 28\)

\(28\times 28\)

4

2nd layer

Dimension of 1st convolutional layer

\(28\times 28\)

\(28\times 28\)

5

3rd layer

Dimension of 1st pooling layer

\(24\times 24\)

\(24\times 24\)

6

2nd, 3rd layers

Number of features

\(6\)

\(6\)

7

4th layer

Dimension of 2nd convolutional layer

\(12\times 12\)

\(12\times 12\)

8

5th layer

Dimension of 2nd 1 pooling layer

\(8\times 8\)

\(8\times 8\)

9

4th, 5th layers

Number of features

\(12\)

\(12\)

10

− 1st, − 2nd, − 3rd layers

Second type of NN

FCNN

WNN

11

− 3rd layer

Dimension of -3rd input layer

192

192

12

− 2nd layer

Dimension of -2nd hidden layer

None

\(50\)

13

− 2nd layer

Activation function of hidden layer

None

Wavelet

14

− 1st layer

Dimension of − 1st output layer

10

10

15

− 1st layer

Activation function of output layer

Sigmoid

Sigmoid

16

Hyperparameters

Learning rate \(\eta\)

0.1

0.1

17

Hyperparameters

Coefficient of inertia \(\mathrm{\alpha }\)

None

0.2

18

Hyperparameters

\(max\_SPs\)

10

10

19

Hyperparameters

\(max\_ACs\)

6000

6000

20

Hyperparameters

\(target\_err\)

0.0000001

0.0000001

21

Hyperparameters

\(BatchSize\)

10

10