Table 2 The execution of all deep learning methods is timed on the test dataset of 255,701 samples.
From: Scaling up DNA digital data storage by efficiently predicting DNA hybridisation using deep learning
Model | # Params. | Batch | Hardware | Time (s) | Speedup |
|---|---|---|---|---|---|
NUPACK 3 | N/A | N/A | 64-core VM | 372.59 | \(\times\)1.00 |
RoBERTa | 6.1M | 1024 | RTX 3090 | 388.44 ± 0.32 | \(\times\)0.96 |
RNN | 249K | 8192 | RTX 3090 | 15.87 ± 0.10 | \(\times\)23.47 |
4096 | TPUv2 | 03.60 ± 0.11 | \(\times\)103.50 | ||
CNN | 2.8M | 512 | RTX 3090 | 23.84 ± 0.08 | \(\times\)15.63 |
4096 | TPUv2 | 01.23 ± 0.17 | \(\times\) 301.74 | ||
\(\text {CNN}_{\text {Lite}}\) | 470K | 512 | RTX 3090 | 09.01 ± 0.00 | \(\times\)41.34 |
4096 | TPUv2 | 01.28 ± 0.15 | \(\times\)290.21 |