Table 3 Classification with leave-one-out cross validation on the first wave dataset. The bold font identifies the models with best performance, for each of the different rows (i.e. for each predictive model type).
F1 score | Accuracy | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
Coverage 90% | Coverage 75% | Coverage 90% | Coverage 75% | |||||||
Model | GA | DT-RFE | LR-RFE | DT-RFE | LR-RFE | GA | DT-RFE | LR-RFE | DT-RFE | LR-RFE |
LR | 0.899 | 0.824 | 0.865 | 0.809 | 0.806 | 0.903 | 0.829 | 0.870 | 0.820 | 0.810 |
DT | 0.863 | 0.766 | 0.808 | 0.830 | 0.734 | 0.870 | 0.785 | 0.819 | 0.832 | 0.731 |
RF | 0.874 | 0.818 | 0.808 | 0.846 | 0.776 | 0.876 | 0.825 | 0.815 | 0.851 | 0.778 |
NB | 0.778 | 0.800 | 0.836 | 0.775 | 0.803 | 0.762 | 0.801 | 0.839 | 0.789 | 0.806 |
SVM | 0.840 | 0.640 | 0.771 | 0.824 | 0.718 | 0.859 | 0.748 | 0.799 | 0.845 | 0.736 |
Support | 185 | 246 | 254 | 161 | 216 | 185 | 246 | 254 | 161 | 216 |