Table 1 Comparison of model performance.
Model | AUROC [95% CI] | AUPRC [95% CI] | Brier score | ACC (%) | Precision | Recall | F1 score | p value† |
|---|---|---|---|---|---|---|---|---|
Baseline model | ||||||||
Logistic regression | 0.696 [0.636–0.755] | 0.288 [0.207–0.368] | 0.110 | 86.5 | 0.253 | 0.585 | 0.353 | |
Machine learning models | ||||||||
SVM | 0.722 [0.667–0.777] | 0.261[0.168–0.356] | 0.112 | 86.2 | 0.254 | 0.695 | 0.373 | 0.182 |
XGBoost | 0.759 [0.700–0.817] | 0.367 [0.260–0.466] | 0.105 | 86.5 | 0.349 | 0.537 | 0.423 | 0.024 |
LightGBM | 0.772 [0.715–0.829] | 0.385 [0.273–0.497] | 0.103 | 86.7 | 0.328 | 0.695 | 0.445 | 0.003* |
MLP | 0.768 [0.714–0.822] | 0.374 [0.265–0.482] | 0.103 | 86.9 | 0.432 | 0.463 | 0.447 | 0.002* |