Table 2 Predictive performances of the seven candidate learning models using microscopy-derived data.
Architecture | m00 | m01 | m10 | m11 | FCD-HT precision | FCD-HT recall | FCD-HT f-value | KU-812 precision | KU-812 recall | KU-812 f-value | Accuracy | AUC |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
Type 1 Depth 2 (T1D2) | 79 | 82 | 68 | 104 | 0.559139785 | 0.604651163 | 0.581005587 | 0.537414966 | 0.49068323 | 0.512987013 | 0.54954955 | 0.553933 |
Type 1 Depth 4 (T1D4) | 97 | 64 | 45 | 127 | 0.664921466 | 0.738372093 | 0.699724518 | 0.683098592 | 0.602484472 | 0.640264026 | 0.672672673 | 0.697783 |
Type 1 Depth 6 (T1D6) | 76 | 85 | 94 | 78 | 0.478527607 | 0.453488372 | 0.465671642 | 0.447058824 | 0.472049689 | 0.459214502 | 0.462462462 | 0.500469 |
Type 2 Depth 2 (T2D2) | 94 | 67 | 55 | 117 | 0.635869565 | 0.680232558 | 0.657303371 | 0.630872483 | 0.583850932 | 0.606451613 | 0.633633634 | 0.529684 |
Type 2 Depth 3 (T2D3) | 103 | 58 | 53 | 119 | 0.672316384 | 0.691860465 | 0.681948424 | 0.66025641 | 0.639751553 | 0.649842271 | 0.666666667 | 0.642514 |
Type 2 Depth 4 (T2D4) | 106 | 55 | 35 | 137 | 0.713541667 | 0.796511628 | 0.752747253 | 0.75177305 | 0.658385093 | 0.701986755 | 0.72972973 | 0.73653 |
Type 2 Depth 5 (T2D5) | 136 | 25 | 42 | 130 | 0.838709677 | 0.755813953 | 0.795107034 | 0.764044944 | 0.844720497 | 0.802359882 | 0.798798799 | 0.874621 |