Table 1 Comparison of the the segmentation accuracy between different models in terms of the DSC, MSD and 95p HD (mean ± SD and median) for test set 1 annotated by observer 1.

From: Deep learning-based segmentation of the thorax in mouse micro-CT scans

Organ

Algorithm

Model

DSC

MSD (mm)

95p HD (mm)

Mean ± SD

Median

Mean ± SD

Median

Mean ± SD

Median

Heart

nnU-Net

3d_fullres

0.95 ± 0.01

0.950

0.08 ± 0.02

0.088

0.30 ± 0.07

0.28

3d_lowres

0.95 ± 0.01

0.949*

0.09 ± 0.02

0.090*

0.30 ± 0.07

0.28

3d_cascade

0.95 ± 0.01

0.950

0.09 ± 0.02

0.089

0.31 ± 0.07

0.28

2d

0.94 ± 0.01

0.945*

0.10 ± 0.01

0.096*

0.33 ± 0.06

0.31*

AIMOS

UNet-768

0.94 ± 0.01

0.945*

0.10 ± 0.02

0.094*

0.33 ± 0.07

0.31*

Spinal Cord

nnU-Net

3d_fullres

0.91 ± 0.02

0.913

0.04 ± 0.01

0.034

0.28 ± 0.02

0.28

3d_lowres

0.90 ± 0.02

0.898*

0.04 ± 0.01

0.041*

0.29 ± 0.03

0.28

3d_cascade

0.91 ± 0.01

0.912

0.03 ± 0.01

0.034

0.28 ± 0.02

0.28

2d

0.91 ± 0.02

0.907*

0.04 ± 0.01

0.036

0.28 ± 0.02

0.28

AIMOS

UNet-768

0.90 ± 0.02

0.909*

0.04 ± 0.01

0.036*

0.28 ± 0.02

0.28

Right Lung

nnU-Net

3d_fullres

0.97 ± 0.01

0.970

0.04 ± 0.01

0.036

0.42 ± 0.00

0.42

3d_lowres

0.97 ± 0.01

0.967*

0.04 ± 0.01

0.040*

0.42 ± 0.00

0.42

3d_cascade

0.97 ± 0.01

0.970

0.04 ± 0.01

0.035

0.42 ± 0.00

0.42

2d

0.97 ± 0.01 (0.97 ± 0.01)

0.966*

0.60 ± 0.84 (0.04 ± 0.01)

0.112*

5.29 ± 19.8 (0.42 ± 0.00)

0.42

AIMOS

UNet-768

0.96 ± 0.01

0.963*

0.05 ± 0.01

0.044*

0.42 ± 0.00

0.42

Left Lung

nnU-Net

3d_fullres

0.97 ± 0.01

0.966

0.04 ± 0.01

0.035

0.53 ± 0.13

0.56

3d_lowres

0.96 ± 0.01

0.962*

0.04 ± 0.01

0.042*

0.56 ± 0.00

0.56

3d_cascade

0.97 ± 0.01

0.966

0.04 ± 0.01

0.035

0.53 ± 0.13

0.56

2d

0.96 ± 0.01

0.965*

0.04 ± 0.02

0.037*

0.54 ± 0.09

0.56

AIMOS

UNet-768

0.95 ± 0.01

0.956*

0.05 ± 0.01

0.045*

0.56 ± 0.00

0.56

  1. The asterisk (*) indicates a significant difference with the nnU-Net 3d full resolution model according to the Wilcoxon signed rank test with a significance level of \(\alpha =0.05\). Values in parentheses correspond to re-calculated metrics after connected component analysis.