Table 4 Comparative analysis between bvp4c and PCM techniques for velocity.
From: Parametric simulation of micropolar fluid with thermal radiation across a porous stretching surface
\(\eta\) | \({\text{PCM}}\,\,f^{\prime}(\eta )\) | \({\text{bvp4c}}\,\,f^{\prime}(\eta )\) | Absolute error |
|---|---|---|---|
0.0 | \(5.09 \times 10^{ - 21}\) | 0.000000 | \(5.09 \times 10^{ - 21}\) |
0.1 | 0.059923 | 0.121043 | \(4.2 \times 10^{ - 7}\) |
0.2 | 0.159901 | 0.211168 | \(1.7 \times 10^{ - 6}\) |
0.3 | 0.259954 | 0.311364 | \(3.7 \times 10^{ - 6}\) |
0.4 | 0.359994 | 0.411624 | \(6.03 \times 10^{ - 6}\) |
0.5 | 0.459987 | 0.511937 | \(9.2 \times 10^{ - 6}\) |
0.6 | 0.559998 | 0.612295 | \(1.4 \times 10^{ - 5}\) |
0.7 | 0.659935 | 0.713689 | \(1.7 \times 10^{ - 5}\) |
0.8 | 0.759957 | 0.813110 | \(2.3 \times 10^{ - 5}\) |
0.9 | 0.859902 | 0.913549 | \(2.7 \times 10^{ - 5}\) |
10.0 | 0.959946 | 1.023997 | \(2.8 \times 10^{ - 5}\) |