Table 4 Comparative analysis between bvp4c and PCM techniques for velocity.

From: Parametric simulation of micropolar fluid with thermal radiation across a porous stretching surface

\(\eta\)

\({\text{PCM}}\,\,f^{\prime}(\eta )\)

\({\text{bvp4c}}\,\,f^{\prime}(\eta )\)

Absolute error

0.0

\(5.09 \times 10^{ - 21}\)

0.000000

\(5.09 \times 10^{ - 21}\)

0.1

0.059923

0.121043

\(4.2 \times 10^{ - 7}\)

0.2

0.159901

0.211168

\(1.7 \times 10^{ - 6}\)

0.3

0.259954

0.311364

\(3.7 \times 10^{ - 6}\)

0.4

0.359994

0.411624

\(6.03 \times 10^{ - 6}\)

0.5

0.459987

0.511937

\(9.2 \times 10^{ - 6}\)

0.6

0.559998

0.612295

\(1.4 \times 10^{ - 5}\)

0.7

0.659935

0.713689

\(1.7 \times 10^{ - 5}\)

0.8

0.759957

0.813110

\(2.3 \times 10^{ - 5}\)

0.9

0.859902

0.913549

\(2.7 \times 10^{ - 5}\)

10.0

0.959946

1.023997

\(2.8 \times 10^{ - 5}\)