Table 1 Proposed PSOSSO algorithm flowchart.
Algorithm |
|---|
Salp Swarm Optimization Algorithm (SSO) |
1. Initialize the duty cycle (dc) near the ub |
2. Calculate the fitness of each search agent (salp) |
3. Find the best value and best position |
4. F = the best search agent (best position) |
5. i = searching agent |
6. Update C1 by Eq. (13) for each salp (xi) |
Particle Swarm Optimization Algorithm (PSO) |
7. Initialize the PSO parameters, |
8. Inertia Weight W, |
9. Personal Learning Coefficient c1 |
10. Global Learning Coefficient c2 |
Hybrid Algorithm (PSOSSO) |
11. Update the PSO velocity by Eq. (10) |
12. Update PSO position by Eq. (11) |
13. If (i == 1) |
14. Update leading salp position Eq. (12) |
15. Else |
16. Update salp follower position Eq. (15) |
17. End |
18. Amend the salps based on the upper and lower bounds of variables |
19. Velocity = salp position divide by the PSO velocity |
20. End |
21. Update the position dc(i) = dc(i) + velocity |