Table 4 Calculation of variables from the sensor axis records.

From: Modern livestock farming under tropical conditions using sensors in grazing systems

Variable

Equation

SMAa

\(\left|{X}_{i}\right|+\left|{Y}_{i}\right|+\left|{Z}_{i}\right|\)

SVMb

\(\sqrt{{X}_{i}^{2}+{Y}_{i}^{2}+{Z}_{i}^{2}}\)

Movement variation

\(\left|{X}_{i+1}-{X}_{i}\right|+\left|{Y}_{i+1}-{Y}_{i}\right|+\left|{Z}_{i+1}-{Z}_{i}\right|\)

Energy

\({\left({X}_{i}^{2}+{Y}_{i}^{2}+{Z}_{i}^{2}\right)}^{2}\)

Entropy

\({\left(1+\left({X}_{i}+{Y}_{i}+{Z}_{i}\right)\right)}^{2}\times ln \left(1+{\left({X}_{i}+{Y}_{i}+{Z}_{i}\right)}^{2}\right)\)

Pitch (degrees)

\(tan^{ - 1} \left( {{{ - X_{i} } \mathord{\left/ {\vphantom {{ - X_{i} } {\left( {\sqrt {Y_{i}^{2} + Z_{i}^{2} } } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {\sqrt {Y_{i}^{2} + Z_{i}^{2} } } \right)}}} \right) \times 180{/}\pi\)

Roll (degrees)

\(atan2(Y_{i} ,Z_{i} ) \times 180{/}\pi\)

Inclination (degrees)

\(tan^{ - 1} \left( {{{\left( {\sqrt {X_{i}^{2} + Y_{i}^{2} } } \right)} \mathord{\left/ {\vphantom {{\left( {\sqrt {X_{i}^{2} + Y_{i}^{2} } } \right)} {Z_{i} }}} \right. \kern-\nulldelimiterspace} {Z_{i} }}} \right) \times 180{/}\pi\)

  1. aSMA, signal magnitude area; bSVM, signal vector magnitude (Alvarenga et al.4).