Table 1 The lower boundary (LB) and the upper boundary (UB)for each model.
From: Plant stem tissue modeling and parameter identification using metaheuristic optimization algorithms
Models | Cole | Double Cole | Double-shell | Proposed stem model | Proposed simplified stem model | |||||
|---|---|---|---|---|---|---|---|---|---|---|
LB | UB | LB | UB | LB | UB | LB | UB | LB | UB | |
Parameters | ||||||||||
\(\alpha\) | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
\(\beta\) | – | – | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
\(\gamma\) | – | – | – | – | – | – | 0 | 1 | 0 | 1 |
\(\zeta\) | – | – | – | – | – | – | 0 | 1 | – | – |
\(\lambda\) | – | – | – | – | – | – | 0 | 1 | – | – |
\(R_\infty\) | 0 | 100 K\(\Omega\) | 0 | 1 M\(\Omega\) | – | – | – | – | – | – |
\(R_o\) | 0 | 80 M\(\Omega\) | – | – | – | – | 0 | 1 G\(\Omega\) | 0 | 100 M\(\Omega\) |
\(R_1\) | – | – | 0 | 1 M\(\Omega\) | 0 | 10 M\(\Omega\) | 0 | 1 G\(\Omega\) | 0 | 100 M\(\Omega\) |
\(R_2\) | – | – | 0 | 1 M\(\Omega\) | 0 | 10 M\(\Omega\) | 0 | 1 G\(\Omega\) | 0 | 100 M\(\Omega\) |
\(R_3\) | – | – | – | – | 0 | 10 M\(\Omega\) | 0 | 1 G\(\Omega\) | – | – |
\(R_4\) | – | – | – | – | – | – | 0 | 1 G\(\Omega\) | – | – |
\(C_\alpha\) | 0 | \(3 \mu \hbox {F}\) | 0 | \(4 \mu \hbox {F}\) | 0 | \(3\mu \hbox {F}\) | 0 | \(100\mu \hbox {F}\) | 0 | \(10\mu \hbox {F}\) |
\(C_\beta\) | – | – | 0 | \(4 \mu \hbox {F}\) | 0 | \(3 \mu \hbox {F}\) | 0 | \(100\mu \hbox {F}\) | 0 | \(10\mu \hbox {F}\) |
\(C_\gamma\) | – | – | – | – | – | – | 0 | \(100\mu \hbox {F}\) | 0 | \(10\mu \hbox {F}\) |
\(C_\zeta\) | – | – | – | – | – | – | 0 | \(100\mu \hbox {F}\) | – | – |
\(C_\lambda\) | – | – | – | – | – | – | 0 | \(100\mu \hbox {F}\) | – | – |