Table 3 Image fusion quantitative metrics for spatiotemporal problem for 12-bit MSI and OLI at two different acquisition times over different object classes for the Tehran dataset. No object class with the farmland label was detected in this area.

From: An object-based sparse representation model for spatiotemporal image fusion

Object class

Approach

RMSE

ERGAS

SAM

UIQI

PSNR

AG

SAMRG index

G

R

RG

Impervious surface

Fit-FC

92.619

2.601

25.96

0.8544

200.66

167.31

3.35

20.64

12.29

FSDAF

81.236

2.159

21.45

0.9539

201.81

244.06

2.77

17.19

10.53

STSR

30.492

1.186

14.37

0.9896

210.32

208.25

1.88

7.38

3.71

Farmland

Fit-FC

–

–

–

–

–

–

–

–

–

FSDAF

–

–

–

–

–

–

–

–

–

STSR

–

–

–

–

–

–

–

–

–

Vegetated surface

Fit-FC

19.568

0.307

5.36

0.9661

214.17

153.29

3.63

4.39

4.01

FSDAF

23.755

0.372

9.23

0.9913

212.48

170.98

4.52

8.07

4.84

STSR

12.776

0.200

2.95

0.9983

217.87

162.73

2.03

3.10

2.59

Water body and wetland

Fit-FC

0.909

0.104

1.97

0.9904

240.83

92.95

0.74

1.68

1.27

FSDAF

0.987

0.113

2.65

0.9972

240.11

119.06

1.52

2.23

1.95

STSR

0.813

0.093

1.44

0.9990

241.80

130.14

0.49

0.91

0.82

Overall

Fit-FC

37.699

1.004

11.10

0.9370

218.55

137.85

2.57

8.90

5.86

FSDAF

35.326

0.881

11.11

0.9808

218.13

178.03

2.94

9.16

5.77

STSR

14.694

0.493

6.25

0.9956

223.33

167.04

1.47

3.80

2.37

  1. Significant values are in bold.