Table 1 Scaling of performance in BB-SGQT vs SGQT with qubit dimension.

From: Self-guided quantum state tomography for limited resources

 

k

BB-SGQT

SGQT

Improvement

\(d=16\)

\(10^1\)

\(8.39 \times 10^{-1}\)

\(9.75 \times 10^{-1}\)

\(\times 1.16\)

\(10^2\)

\(3.24 \times 10^{-1}\)

\(9.39 \times 10^{-1}\)

\({\times 2.89}\)

\(10^3\)

\(4.93 \times 10^{-3}\)

\(5.94 \times 10^{-3}\)

\({\times 1.20}\)

\(10^4\)

\(5.23 \times 10^{-5}\)

\(4.73 \times 10^{-5}\)

Marginal difference

\(d=32\)

\(10^1\)

\(9.41 \times 10^{-1}\)

\(9.74 \times 10^{-1}\)

\({\times 1.03}\)

\(10^2\)

\(6.07 \times 10^{-1}\)

\(9.25 \times 10^{-1}\)

\(\times 1.52\)

\(10^3\)

\(9.66 \times 10^{-2}\)

\(4.48 \times 10^{-1}\)

\({\times 4.63}\)

\(10^4\)

\(2.50 \times 10^{-4}\)

\(7.29 \times 10^{-4}\)

\(\times 2.91\)

\(d=64\)

\(10^1\)

\(9.54 \times 10^{-1}\)

\(9.55 \times 10^{-1}\)

Same performance

\(10^2\)

\(9.18 \times 10^{-1}\)

\(9.20 \times 10^{-1}\)

Same performance

\(10^3\)

\(3.70 \times 10^{-1}\)

\(5.33 \times 10^{-1}\)

\(\times 1.44\)

\(10^4\)

\(1.76 \times 10^{-2}\)

\(1.42 \times 10^{-1}\)

\({\times 8.06}\)