Table 1 Scaling of performance in BB-SGQT vs SGQT with qubit dimension.
From: Self-guided quantum state tomography for limited resources
k | BB-SGQT | SGQT | Improvement | |
|---|---|---|---|---|
\(d=16\) | \(10^1\) | \(8.39 \times 10^{-1}\) | \(9.75 \times 10^{-1}\) | \(\times 1.16\) |
\(10^2\) | \(3.24 \times 10^{-1}\) | \(9.39 \times 10^{-1}\) | \({\times 2.89}\) | |
\(10^3\) | \(4.93 \times 10^{-3}\) | \(5.94 \times 10^{-3}\) | \({\times 1.20}\) | |
\(10^4\) | \(5.23 \times 10^{-5}\) | \(4.73 \times 10^{-5}\) | Marginal difference | |
\(d=32\) | \(10^1\) | \(9.41 \times 10^{-1}\) | \(9.74 \times 10^{-1}\) | \({\times 1.03}\) |
\(10^2\) | \(6.07 \times 10^{-1}\) | \(9.25 \times 10^{-1}\) | \(\times 1.52\) | |
\(10^3\) | \(9.66 \times 10^{-2}\) | \(4.48 \times 10^{-1}\) | \({\times 4.63}\) | |
\(10^4\) | \(2.50 \times 10^{-4}\) | \(7.29 \times 10^{-4}\) | \(\times 2.91\) | |
\(d=64\) | \(10^1\) | \(9.54 \times 10^{-1}\) | \(9.55 \times 10^{-1}\) | Same performance |
\(10^2\) | \(9.18 \times 10^{-1}\) | \(9.20 \times 10^{-1}\) | Same performance | |
\(10^3\) | \(3.70 \times 10^{-1}\) | \(5.33 \times 10^{-1}\) | \(\times 1.44\) | |
\(10^4\) | \(1.76 \times 10^{-2}\) | \(1.42 \times 10^{-1}\) | \({\times 8.06}\) |