Table 3 Matrix of accuracy results, according to different scales and algorithms.
Scaler | SVM | LR | K-neighbors | Decision Tree | Naive Bayes | Random Forest | MLP | GP | AdaBoost | Bagging |
|---|---|---|---|---|---|---|---|---|---|---|
MinMax | 0.8826 | 0.8876 | 0.8759 | 0.8776 | 0.5378 | 0.8901 | 0.8901 | 0.8718 | 0.886 | 0.8793 |
Standard | 0.8868 | 0.8968 | 0.8818 | 0.8801 | 0.5378 | 0.8976 | 0.8926 | 0.8718 | 0.8843 | 0.8859 |
MaxAbs | 0.8826 | 0.8876 | 0.8759 | 0.8751 | 0.5378 | 0.8943 | 0.8909 | 0.8718 | 0.8851 | 0.8793 |
Robust | 0.8826 | 0.8968 | 0.8784 | 0.8743 | 0.5378 | 0.8868 | 0.8934 | 0.8726 | 0.8835 | 0.8818 |
Quant-Normal | 0.8859 | 0.8968 | 0.8843 | 0.8826 | 0.5378 | 0.8951 | 0.8993 | 0.8734 | 0.8843 | 0.8918 |
Quant-Uniform | 0.8809 | 0.8876 | 0.8759 | 0.8693 | 0.5378 | 0.8984 | 0.8893 | 0.8718 | 0.886 | 0.8793 |
PowerTransf-yeoJhonson | 0.8818 | 0.8968 | 0.8776 | 0.8693 | 0.5378 | 0.8935 | 0.8951 | 0.8718 | 0.8843 | 0.8859 |