Table 3 Results of comparison methods and proposed method.
From: A novel liver cancer diagnosis method based on patient similarity network and DenseGCN
| Â | Precision | Recall | F1-Score | Accuracy | AUC |
|---|---|---|---|---|---|
pDenseGCN | 0.9865 | 0.9865 | 0.9865 | 0.9857 | 0.9856 |
ASVM | 0.937 | 0.9744 | 0.9553 | 0.9208 | 0.8531 |
XGBoost-AD | 0.9736 | 0.9729 | 0.9732 | 0.9726 | 0.9759 |
MGRFE-GaRFE | 0.9689 | 0.9397 | 0.9183 | 0.954 | 0.8306 |
ET-SVM | 0.96 | 0.6316 | 0.7619 | 0.7945 | 0.8015 |
XOmiVAE | 0.946 | 0.8974 | 0.9211 | 0.8537 | 0.8718 |
LDA | 0.7262 | 0.8133 | 0.7673 | 0.7466 | 0.7447 |
RF | 0.9605 | 0.9125 | 0.9359 | 0.937 | 0.9848 |
NB | 0.8977 | 0.7914 | 0.8412 | 0.8452 | 0.8492 |
DT | 0.9254 | 0.8267 | 0.8732 | 0.8767 | 0.8781 |