Table 2 Average values of trade flows and flow variation index \(\rho _{ij}\) for each of the three sets, in US$ (a), Kcal (b), and Virtual water (VW, m\(^3\)). The bar indicates the average operator.

From: Role of trade agreements in the global cereal market and implications for virtual water flows

Operational activation

US $

\(\overline{V_{ij}}(t)\)

\(3.59 \times 10^7\)

\(\overline{\mid \rho _{ij}\mid }_{w}\)

41.77 p.p

Trade Agreement in t-1 and t

\(\overline{V_{ij}}(t)\)

\(6.13 \times 10^7\)

\(\overline{\mid \rho _{ij}\mid }_{w}\)

24.79 p.p

No Trade Agreement

\(\overline{V_{ij}}(t)\)

\(3.05 \times 10^7\)

\(\overline{\mid \rho _{ij}\mid }_{w}\)

46.82 p.p

Kcal

\(\overline{V_{ij}}(t)\)

\(5.23\times 10^{11}\)

\(\overline{\mid \rho _{ij}\mid }_{w}\)

48.04 p.p

Trade Agreement in t-1 and t

\(\overline{V_{ij}}(t)\)

\(7.55\times 10^{11}\)

\(\overline{\mid \rho _{ij}\mid }_{w}\)

27.29 p.p

No Trade Agreement

\(\overline{V_{ij}}(t)\)

\(4.36\times 10^{11}\)

\(\overline{\mid \rho _{ij}\mid }_{w}\)

48.22 p.p

VW m\(^3\)

\(\overline{V_{ij}}(t)\)

\(1.98 \times 10^{8}\)

\(\overline{\mid \rho _{ij}\mid }_{w}\)

43.10 p.p

Trade Agreement in t-1 and t

\(\overline{V_{ij}}(t)\)

\(2.56\times 10^{8}\)

\(\overline{\mid \rho _{ij}\mid }_{w}\)

40.07 p.p

No Trade Agreement

\(\overline{V_{ij}}(t)\)

\(1.94\times 10^{8}\)

\(\overline{\mid \rho _{ij}\mid }_{w}\)

54.99 p.p

  1. The subscript w indicates the weighted average, where weights correspond to the flows at time \(t-1\) (i.e.,\(V_{ij}(t-1)\)). Values of \(\rho _{ij}\) is reported in percentage point (p.p). Section (d) of the supplementary material provides the values of virtual water separated into the blue and green water components.