Table 3 Modularity of extended graph datasets.

From: Isolate sets partition benefits community detection of parallel Louvain method

Datasets

Modularity (NMI)

Sequential Louvain method

Hash-table-based method

Isolate-set-based method

Amazon0302

0.8998

0.8969

0.9017

Amazon0312

0.8720

0.8677

0.8759

Amazon0505

0.8664

0.8713

0.8765

Amazon0601

0.8691

0.8721

0.8776

as-skitter

0.8132

0.8312

0.8506

cit-Patents

0.8114

0.8102

0.8136

amazon.ungraph

0.9262 (0.1240)

0.9248 (0.1182)

0.9261 (0.1240)

com-dblp.ungraph

0.8203 (0.1345)

0.8155 (0.1301)

0.8211 (0.1345)

com-lj.ungraph

0.7163

0.7204

0.7504

com-orkut.ungraph

0.6614 (0.0633)

0.6987 (0.0645)

0.6567 (0.0627)

com-youtube.ungraph

0.7103

0.6909

0.7189

Gowalla-edges

0.6889

0.6839

0.7115

soc-LiveJournal1

0.7284

0.7287

0.7558

soc-pokec-relationships

0.6895

0.7122

0.7166

web-Google

0.9777

0.9768

0.9776

orkut-groupmemberships

0.3071

0.3042

0.3138

enwiki-2013

0.6534

0.6304

0.6605

wikipedia-link-en

0.3618

0.3817

0.3706

  1. Significant values are in bold.