Table 2 The comparison of the presented diffractive optical networks, in terms of (1) all-optical overlapping object classification accuracies on T2 and (2) the quality of the image reconstruction achieved through separately-trained, shallow, electronic networks (decoder).
Optical classification | Image reconstruction | |||
|---|---|---|---|---|
Diffractive network | Number of detectors (\(M\) = 10) | Accuracy on T2 (%) | SSIM | PSNR (dB) |
D2NN-D1 | 2 \(M\) | 82.70 | 0.52 ± 0.12 | 15.09 ± 2.32 |
D2NN-D1d | 4 \(M\) | 85.82 | 0.57 ± 0.10 | 16.02 ± 2.21 |
D2NN-D2 | \(M\) + 2 | 82.61 | 0.49 ± 0.10 | 14.55 ± 2.17 |
D2NN-D2d | 2 \(M\) + 2 | 85.22 | 0.57 ± 0.12 | 15.60 ± 2.37 |