Table 4 Multivariate logistic regression of three models for differentiation of fibrotecoma and BLM.

From: MRI-based nomogram for differentiation of ovarian fibrothecoma and broad ligament myoma

Model

Variables

Weight

OR (95% CI)

P-value

Model 1

Age

− 0.051

0.950 (0.909–0.992)

0.021

r-T1

− 7.952

0.004 (0.001–0.014)

 < 0.001

r-T2

− 0.882

0.414 (0.225–0.761)

0.005

Model 2

Enhancement

1.901

6.755 (2.477–18.418)

 < 0.001

Stone paving sign

3.109

22.405 (3.359–149.46)

0.001

Ovary sign

1.566

4.787 (0.937–24.445)

0.043

Ascites

− 2.394

0.091 (0.014–0.586)

0.012

Model 3

r-T1

− 6.246

0.002 (0.001–0.168)

0.006

Enhancement

1.561

4.762 (1.696–13.369)

0.003

Stone paving

2.969

19.475 (2.700–140.47)

0.003

Ascites

− 2.973

0.051 (0.006–0.431)

0.006

  1. OR odds ratio, AUC Area under curve, SEN sensitivity, SPC specificity, r-T1 relative T1 value, r-T2 relative T2 value.