Table 1 Overview of Model Performances according to 80% sensitivity.
From: Towards interpretable, medically grounded, EMR-based risk prediction models
Model | Pre/Post | Features | AUC | Threshold | MCC | Sensitivity | Specificity | PPV | NPV |
|---|---|---|---|---|---|---|---|---|---|
SSI models | |||||||||
Naïve Gradient Boosting | Pre | 8 | 0.759 | 0.046 | 0.236 | 0.805 | 0.540 | 0.106 | 0.976 |
Post | 56 | 0.857 | 0.041 | 0.308 | 0.805 | 0.761 | 0.185 | 0.983 | |
Literature-based Gradient Boosting | Pre | 12 | 0.762 | 0.044 | 0.208 | 0.805 | 0.615 | 0.124 | 0.979 |
Post | 15 | 0.853 | 0.049 | 0.317 | 0.805 | 0.770 | 0.191 | 0.983 | |
Leak models | |||||||||
Naïve Gradient Boosting | Pre | 60 | 0.775 | 0.033 | 0.134 | 0.795 | 0.582 | 0.059 | 0.988 |
Post | 82 | 0.855 | 0.031 | 0.222 | 0.795 | 0.758 | 0.098 | 0.981 | |
Literature-based Gradient Boosting | Pre | 8 | 0.793 | 0.031 | 0.160 | 0.795 | 0.644 | 0.069 | 0.990 |
Post | 10 | 0.861 | 0.034 | 0.233 | 0.795 | 0.774 | 0.104 | 0.991 | |