Table 6 Optimal AI training parameters for hourly SR task.

From: Comprehensive assessment, review, and comparison of AI models for solar irradiance prediction based on different time/estimation intervals

Location

Model

No. of hidden layers, [No. of neurons in each hidden layer]

Batch size

Epoch

Algeria GSR

ANN

3, [100, 100, 50]

512

100

CNN-ANN

7, [64, 64, 32, (), 100, 100, 50]

512

100

CNN-LSTM-ANN

6, [32, 32, 32, 50, 50, 25]

512

100

CNN

2, [150, 100]

512

100

LSTM

2, [150, 100]

512

15

Nigeria DSR

ANN

2, [100, 50]

512

50

CNN-ANN

3, [64, (), 50]

512

30

CNN-LSTM-ANN

3, [32, 32, 50]

512

30

CNN

2, [150, 100]

512

50

LSTM

1, [100]

512

20

Central African Republic GSR

ANN

3, [200, 200, 100]

512

30

CNN-ANN

7, [32, 64, 32, (), 32, 100, 32]

512

10

CNN-LSTM-ANN

6, [32, 16, 32, 25, 50, 25]

512

10

CNN

2, [150, 100]

512

30

LSTM

1, [150]

512

10

Egypt GSR

ANN

3, [200, 200, 100]

128

7

CNN-ANN

7, [32, 64, 32, (), 32, 100, 32]

512

10

CNN-LSTM-ANN

6, [32, 16, 32, 25, 50, 25]

512

10

CNN

2, [150, 100]

512

30

LSTM

2, [150, 100]

512

50

South Africa GSR

ANN

2, [100, 50]

512

20

CNN-ANN

3, [64 (), 32]

512

20

CNN-LSTM-ANN

6, [32, 16, 32, 25, 50, 25]

512

10

CNN

2, [150, 100]

512

20

LSTM

2, [50, 50]

512

50

  1. Significant values are in [bold, italics and bold Italic].