Table 2 Result of ANN in prediction of hybrid rice yield from their parent’s features.

From: Predicting hybrid rice performance using AIHIB model based on artificial intelligence

Hybrids

FS algorithm

Selected features

ANN structure

MSE (train)

MSE (vald)

MSE (test)

R2 (test)

AHM × KHZ

GA

FLL, FLW, FLA, BI, FGN

5–4–1

0.0348

0.0427

0.0275

0.9684

PSO

FLW, FLA, FGN, FLL

4–8–1

0.0250

0.0673

0.0105

0.9694

AHM × SPD

GA

PE, HE, PL, DFL, GY

5–31–1

0.0981

0.1691

0.1262

0.9695

PSO

FLL, PL, DFL, PE, HE, GY

6–31–1

0.0755

0.6932

0.1220

0.9694

GHB × KHZ

GA

FGN, FLA, BI, PL

4–6–1

0.0069

0.0038

0.0094

0.9688

PSO

FGN, FLL, FLA, BI

4–9–1

0.0055

0.0093

0.0106

0.9682

IR28 × GHB

GA

PE, GY, BI, HE, PL

5–37–1

0.0086

0.0117

0.0088

0.9696

PSO

GY, PL, PE, BI, HE

5–28–1

0.0054

0.0090

0.0090

0.9696

IR28 × TAM

GA

FLA, PL, GY, HE, FLW

5–40–1

0.0011

0.0126

0.0027

0.9697

PSO

PL, GY, HE, FLA, FLW

5–41–1

0.0011

0.0046

0.0020

0.9698

SHP × GHB

GA

GY, PBN, FLL, PL, HE

5–33–1

0.0004

0.0020

0.0016

0.9695

PSO

GY, PBN, FLL, HE, PL

5–42–1

0.0005

0.0040

0.0012

0.9694

SHP × SPD

GA

FLL, GY, FLA, HE

4–28–1

0.0055

0.0146

0.0056

0.9697

PSO

FLL, BI, HE, FLA, GY

5–15–1

0.0060

0.0230

0.0080

0.9696

TAM × KHZ

GA

DFL, FLW, FLA, FGN, BI

5–30–1

0.0226

0.3924

0.0399

0.9658

PSO

FLW, BI, DFL, FLA

4–19–1

0.0221

0.07027

0.0336

0.9678

TAM × SHP

GA

FLA, PL, BI, GY

4–34–1

0.0008

0.0011

0.0011

0.9697

PSO

FLL, BI, FLA, GY

4–31–1

0.0009

0.0014

0.0013

0.9695

General data

GA

PBN, FGN, HE, DFL, GY

5–42–1

0.0486

0.0992

0.0738

0.9699

PSO

PBN, GY, DFL, FGN, HE

5–32–1

0.0550

0.0518

0.0805

0.9698