Table 3 Classification accuracy and details of the proposed method and deep neural network approaches which used raw EEG signals11,12,17,21,23,25,26 for the SEED dataset.

From: Accurate emotion recognition using Bayesian model based EEG sources as dynamic graph convolutional neural network nodes

Subject-dependent/independent

Methods

Used signals

Accuracy (%)

Subject-dependent

Jin et al.26 (2020)

Raw EEG

98.51

Zhong et al.25 (2020)

Raw EEG

92.58

Khare et al.23 (2020)

Raw EEG

91.10

Wang et al.21 (2020)

Raw EEG

89.62

Song et al.17 (2018)

Raw EEG

84.43

Chen et al.12 (2020)

Raw EEG

81.47

Padilla et al.11 (2016)

Raw EEG

62.95

Proposed method

EEG source signal

99.25

Subject-independent

Jin et al.26 (2020)

Raw EEG

97.77

Zhong et al.25 (2020)

Raw EEG

88.88

Khare et al.23 (2020)

Raw EEG

81.48

Wang et al.21 (2020)

Raw EEG

74.07

Song et al.17 (2018)

Raw EEG

72.59

Chen et al.12 (2020)

 

70.37

Padilla et al.11 (2016)

 

59.25

Proposed method

EEG source signal

98.51

  1. Significant values are in bold.