Table 6 The aggregated values of alternatives.

From: New multi-criteria decision-making technique based on neutrosophic axiomatic design

 

C1

C2

C3

C4

A1

\(< \left(\mathrm{3.67,4.67,5.67}\right);(\mathrm{0.7,0.4,0.4}) >\)

\(< \left(\mathrm{2,3},4\right);(\mathrm{0.5,0.5,0.5})>\)

\(< \left(4.67, \mathrm{5.67,6.67}\right);(\mathrm{0.7,0.4,0.4})>\)

\(< \left(\mathrm{6.33,7.33,8.33}\right);(\mathrm{0.8,0.2,0.2})>\)

A2

\(< \left(\mathrm{4,5},6\right);(\mathrm{0.7,0.4,0.4})>\)

\(< \left(\mathrm{1,2},3\right);(\mathrm{0.2,0.8,0.8})>\)

\(< \left(\mathrm{4,5},6\right);(\mathrm{0.7,0.4,0.4})>\)

\(< \left(\mathrm{5.67,6.67,7.67}\right);(\mathrm{0.8,0.2,0.2})>\)

A3

\(< \left(2.67, \mathrm{3.67,4.67}\right);(\mathrm{0.5,0.5,0.5})>\)

\(< \left(0.67, 1.67, 2.67\right);(\mathrm{0.3,0.7,0.7})>\)

\(< \left(4.33, 5.33, 6.33\right);(\mathrm{0.5,0.5,0.5})>\)

\(< \left(\mathrm{5.33,6.33,7.33}\right);(\mathrm{0.8,0.2,0.2})>\)

A4

\(< \left(5.67, \mathrm{6.67,7.67}\right);(\mathrm{0.80,0.20}, 0.20)>\)

\(< \left(\mathrm{0.67,1.67,2.67}\right);(\mathrm{0.3,0.7,0.7})>\)

\(< \left(\mathrm{4.33,5.33,6.33}\right);(\mathrm{0.5,0.5,0.5})>\)

\(< \left(\mathrm{5.33,6.33,7.33}\right);(\mathrm{0.8,0.2,0.2})>\)

A5

\(< \left(4.33, \mathrm{5.33,6.33}\right);(\mathrm{0.7,0.4,0.4})>\)

\(< \left(\mathrm{1,2},3\right);(\mathrm{0.2,0.8,0.8})>\)

\(< \left(3.67, 4.67, 5.67\right);(0.7, \mathrm{0.4,0.4})>\)

\(< \left(\mathrm{7,8},9\right);(\mathrm{0.9,0.1,0.1})>\)