Table 5 Skull stripping performance comparison to state-of-the-arts.

From: A general skull stripping of multiparametric brain MRIs using 3D convolutional neural network

 

# of cases

Dice

Precision

Recall

FPR

FNR

HD95 (mm)

p-value

(t-test on Dice)

BET23

216

0.8494 ± 0.0455

0.7463 ± 0.0718

0.9916 ± 0.0186

0.0650 ± 0.0224

0.0084 ± 0.0186

19.9951 ± 5.4941

\(9.19\times {10}^{-151}\)

3dSS47

216

0.8427 ± 0.0449

0.7430 ± 0.0751

0.9809 ± 0.0279

0.0660 ± 0.0238

0.0191 ± 0.0279

19.9087 ± 4.4316

\(1.29\times {10}^{-159}\)

ROBEX48

216

0.9555 ± 0.0173

0.9730 ± 0.0236

0.9396 ± 0.0318

0.0053 ± 0.0057

0.0604 ± 0.0318

4.4792 ± 1.8869

\(7.52\times {10}^{-54}\)

UNet3D38

216

0.9773 ± 0.0179

0.9818 ± 0.0168

0.9735 ± 0.0290

0.0035 ± 0.0034

0.0265 ± 0.0290

3.1219 ± 2.7262

\(5.61\times {10}^{-6}\)

UPNN39

216

0.9743 ± 0.0257

0.9814 ± 0.0156

0.9684 ± 0.0405

0.0035 ± 0.0032

0.0316 ± 0.0405

3.3924 ± 2.8434

\(4.22\times {10}^{-7}\)

EnNet (ours)

216

0.9850 ± 0.0171

0.9940 ± 0.0093

0.9768 ± 0.0307

0.0012 ± 0.0019

0.0232 ± 0.0307

2.6098 ± 2.4814

–

  1. The best result is highlighted in bold.