Table 3 Comparison of performance of determining fasting status by XGBoost, CatBoost, H2O Ensemble and logistic regression models in the testing dataset (n = 70,644).
Algorithm/modeling strategy | Feature | Sensitivity | Specificity | Precision | F1-score | Accuracy | AUC |
|---|---|---|---|---|---|---|---|
Parsimonious modeling | |||||||
Logistic regression | Model 2* | 0.7608 | 0.8084 | 0.8081 | 0.7804 | 0.7845 | 0.868 (0.865–0.870) |
XGBoost | Model 2* | 0.8261 | 0.7700 | 0.7844 | 0.8047 | 0.7982 | 0.887 (0.885–0.890) |
CatBoost | Model 2* | 0.8415 | 0.7614 | 0.7813 | 0.8103 | 0.8017 | 0.889 (0.887–0.892) |
H2O Ensemble | Model 2* | 0.8823 | 0.7093 | 0.7546 | 0.8135 | 0.7964 | 0.886 (0.884–0.889) |
Full modeling | |||||||
XGBoost | 67 | 0.8394 | 0.7785 | 0.7934 | 0.8158 | 0.8092 | 0.896 (0.894–0.898) |
CatBoost | 67 | 0.8511 | 0.7574 | 0.7805 | 0.8142 | 0.8046 | 0.892 (0.890–0.894) |
H2O Ensemble | 67 | 0.8770 | 0.7399 | 0.7735 | 0.8220 | 0.8089 | 0.897 (0.894–0.899) |
Feature selection modeling | |||||||
XGBoost | Top 45 | 0.8369 | 0.7789 | 0.7932 | 0.8145 | 0.8081 | 0.895 (0.892–0.897) |
XGBoost | Top 35 | 0.8413 | 0.7735 | 0.7901 | 0.8149 | 0.8076 | 0.894 (0.892–0.897) |
XGBoost | Top 25 | 0.8414 | 0.7706 | 0.7880 | 0.8138 | 0.8062 | 0.893 (0.891–0.896) |
XGBoost | Top 10 | 0.8502 | 0.7496 | 0.7748 | 0.8108 | 0.8002 | 0.887 (0.885–0.890) |