Table 2 Predictive performance of arterial catheterization according to each modeling method using the deep or machine learning technique and a combination of features.
Features | Model | AUROC | AUPRC | F1-score |
|---|---|---|---|---|
Preoperative data | DNN | 0.7835 ± 0.0016 | 0.5296 ± 0.0020 | 0.3939 ± 0.0233 |
XGBoost | 0.6017 ± 0.0008 | 0.3385 ± 0.0014 | 0.3542 ± 0.0019 | |
RF | 0.5947 ± 0.0012 | 0.3302 ± 0.0015 | 0.3368 ± 0.0031 | |
LR | 0.5985 ± 0.0008 | 0.3358 ± 0.0012 | 0.3464 ± 0.0018 | |
Laboratory data | DNN | 0.6050 ± 0.0107 | 0.3061 ± 0.0093 | 0.0865 ± 0.0311 |
XGBoost | 0.5208 ± 0.0005 | 0.2555 ± 0.0010 | 0.0960 ± 0.0014 | |
RF | 0.5196 ± 0.0010 | 0.2500 ± 0.0011 | 0.1106 ± 0.0037 | |
LR | 0.5008 ± 0.0002 | 0.2367 ± 0.0008 | 0.0094 ± 0.0006 | |
Operation code | DNN | 0.8930 ± 0.0007 | 0.7548 ± 0.0015 | 0.6770 ± 0.0021 |
XGBoost | 0.6765 ± 0.0008 | 0.4641 ± 0.0017 | 0.5188 ± 0.0018 | |
RF | 0.5288 ± 0.0049 | 0.2760 ± 0.0067 | 0.1095 ± 0.0175 | |
LR | 0.7338 ± 0.0009 | 0.5293 ± 0.0017 | 0.6226 ± 0.0016 | |
All features | DNN | 0.9089 ± 0.0093 | 0.7943 ± 0.0118 | 0.4352 ± 0.0760 |
XGBoost | 0.7262 ± 0.0010 | 0.5292 ± 0.0017 | 0.6121 ± 0.0018 | |
RF | 0.5444 ± 0.0050 | 0.2952 ± 0.0064 | 0.1659 ± 0.0169 | |
LR | 0.6244 ± 0.0009 | 0.3547 ± 0.0014 | 0.4105 ± 0.0018 |