Table 1 The IoU (blue area), mIoU, Accuracy, Dice (blue area) and mDice of Image A1 using other methods and our CES method trained on group B.

From: Center-environment feature models for materials image segmentation based on machine learning

Methods

IoU

mIoU

Accuracy

Dice

mDice

A1

     

MRF

0.315

0.502

0.727

0.479

0.647

Watershed

0.763

0.862

0.966

0.866

0.923

Han

0.529

0.721

0.921

0.692

0.823

Meanshift

0.424

0.621

0.840

0.595

0.748

DT

0.708

0.831

0.958

0.829

0.903

KNN

0.688

0.821

0.958

0.815

0.896

K-means

0.352

0.631

0.914

0.521

0.737

Navie Bayes

0.664

0.807

0.955

0.798

0.886

SVM(RBF)

0.686

0.820

0.958

0.813

0.895

SVM(Sigmoid)

0.798

0.883

0.972

0.887

0.936

RF

0.723

0.841

0.963

0.840

0.909

AdaBoost

0.733

0.847

0.964

0.846

0.913

XGBoost

0.781

0.874

0.971

0.877

0.930

DART

0.769

0.867

0.969

0.870

0.926

GBDT

0.783

0.876

0.971

0.879

0.931

CES

0.788

0.878

0.972

0.881

0.933