Table 1 Recent prediction models for lithium battery.

From: A conditional random field based feature learning framework for battery capacity prediction

Authors

Year

Approach

Zhang et al.31

2016

Relevance vector machine

Wang et al.37

2017

State space model

Gao et al.26

2017

Multi-kernel support vector machine with particle swarm optimization

Zhang et al.38

2018

Particle filter and unscented Kalman filter

Zhang et al.25

2018

LTSM

Ren et al.41

2018

Autoencoder with deep neural network

Fang et al.36

2019

Double extended Kalman filter

Deng et al.43

2019

Least squares support vector machine

Fan et al.32

2020

GRU-CNN

Zhou et al. 33

2020

Temporal convolutional network

Song et al.39

2020

Principal component analysis and support vector machine

Ren et al.40

2020

CNN-LSTM

Kodjo S.R.Mawonou et al.42

2021

Random forest

Hong et al.44

2021

Locally linear embedding and isomap

Jungsoo Kim et al.45

2022

Genetic algorithm and pseudo-2-dimensional model