Table 3 Results from four models fitted to tail length growth to normal-sized and dwarfs hyacinth macaw.

From: Growth model analysis of wild hyacinth macaw (Anodorhynchus hyacinthinus) nestlings based on long-term monitoring in the Brazilian Pantanal

Tail length normal-sized (mm); n = 381

Tail length (mm) Dwarf; n = 15

F test; p value

Model

Parameters

Values

SE

R2

AIC

SE Residual

Values

SE

R2

AICc

SE Residual

Gompertz

A

425.3

15.91

0.9324

7648

26.14

2801

2429

0.9389

405.8

16.12

23.97(3, 1238); p < 0.0001

Y0

0.0689

0.0337

0.0955

0.1419

k

0.0303

0.0013

0.0162

0.0046

Richards

A

428.4

90.11

0.9570

7103

20.86

302.1

*

0.8517

511.1

29.97

Y0

0.001

1.711

2.059

k

3.663

0.9269

98.90

Logistic

A

328.3

6.233

0.9295

7697

37.34

 ~ 0.0000

 

0.9243

421.3

17.94

Y0

2.782

0.2877

2.803

*

k

0.0650

0.0017

0.0500

 

Cubic polynomial

β0

11.76

1.989

0.9317

7662

26.28

− 4.529

9.196

0.9382

409

16.33

27.53(4, 1231); p < 0.0001

β1

− 2.449

0.1668

0.7091

0.7671

β2

0.091

0.0037

− 0.0317

0.0182

β3

− 0.0003

0.0000

0.0006

0.0001

  1. Parameters of the Gompertz, Richards and Logistic models: A upper asymptote (i.e. predicted adult size), k maximum relative growth rate, Y0 initial value of the asymptotic curve. Cubic polynomial models are represented with four parameters: β0 intercept, β1 maximum relative growth rate, β2 upper asymptote, β3 weight loss begins.
  2. *Very wide confidence interval = CI > 95%.