Table 3 Dimensionless relations of mechanical parameters.

From: Bending analysis of sandwich panel composite with a re-entrant lattice core using zig-zag theory

Parameter

Dimensionless relation

\(\overline{{\varvec{W}} }\)

\({{\varvec{W}}\times 10}^{3}\mathbf{D}11/\left(\mathbf{p}{{\varvec{a}}}^{4}\right)({\varvec{a}}/2, {\varvec{b}}/2)\)

\({\overline{\upsigma } }_{xx}\)

\({{\varvec{\upsigma}}}_{{\varvec{x}}{\varvec{x}}}\times (4{{\varvec{h}}}^{2})/(\mathbf{p}{{\varvec{a}}}^{2})({\varvec{a}}/2, {\varvec{b}}/2)\)

\({\overline{{\varvec{\uptau}}} }_{xy}\)

\({{\varvec{\uptau}}}_{{\varvec{x}}{\varvec{y}}}\times ({{\varvec{h}}}^{2})/(\mathbf{p}{{\varvec{a}}}^{2})(0, 0)\)

\({\overline{{\varvec{\uptau}}} }_{xz}\)

\({{\varvec{\uptau}}}_{{\varvec{x}}{\varvec{z}}}\times (2{\varvec{h}})/(\mathbf{p}{\varvec{a}})(0, {\varvec{b}}/2)\)

\({\overline{{\varvec{\uptau}}} }_{yz}\)

\({{\varvec{\uptau}}}_{{\varvec{y}}{\varvec{z}}}\times (2{\varvec{h}})/(\mathbf{p}{\varvec{a}})({\varvec{a}}/2,0)\)

\(\overline{\mathcal{Z} }\)

z/h