Table 3 Dimensionless relations of mechanical parameters.
From: Bending analysis of sandwich panel composite with a re-entrant lattice core using zig-zag theory
Parameter | Dimensionless relation |
|---|---|
\(\overline{{\varvec{W}} }\) | \({{\varvec{W}}\times 10}^{3}\mathbf{D}11/\left(\mathbf{p}{{\varvec{a}}}^{4}\right)({\varvec{a}}/2, {\varvec{b}}/2)\) |
\({\overline{\upsigma } }_{xx}\) | \({{\varvec{\upsigma}}}_{{\varvec{x}}{\varvec{x}}}\times (4{{\varvec{h}}}^{2})/(\mathbf{p}{{\varvec{a}}}^{2})({\varvec{a}}/2, {\varvec{b}}/2)\) |
\({\overline{{\varvec{\uptau}}} }_{xy}\) | \({{\varvec{\uptau}}}_{{\varvec{x}}{\varvec{y}}}\times ({{\varvec{h}}}^{2})/(\mathbf{p}{{\varvec{a}}}^{2})(0, 0)\) |
\({\overline{{\varvec{\uptau}}} }_{xz}\) | \({{\varvec{\uptau}}}_{{\varvec{x}}{\varvec{z}}}\times (2{\varvec{h}})/(\mathbf{p}{\varvec{a}})(0, {\varvec{b}}/2)\) |
\({\overline{{\varvec{\uptau}}} }_{yz}\) | \({{\varvec{\uptau}}}_{{\varvec{y}}{\varvec{z}}}\times (2{\varvec{h}})/(\mathbf{p}{\varvec{a}})({\varvec{a}}/2,0)\) |
\(\overline{\mathcal{Z} }\) | z/h |