Table 3 Binomial linear regression results including age as a covariate, and problem gambler status, gender, and dataset as factors.
Predictor1 | β | Z | Relative risk [95% CI] | p |
|---|---|---|---|---|
Age1 | − 0.42 | − 7.39 | n/a2 | < 0.001 |
Gender: female3 | 0.49 | 4.65 | 1.42 [1.23, 1.63] | < 0.001 |
Gender: non-binary3 | 1.37 | 3.10 | 2.33 [1.44, 3.16] | 0.002 |
Gender: “prefer-not-to-say”3 | 0.22 | 0.31 | 1.18 [0.37, 2.57] | 0.757 |
Gender: other3 | − 0.10 | − 0.08 | 0.93 [0.11, 3.18] | 0.933 |
Dataset | 0.01 | 0.02 | 1.00 [0.86, 1.16] | 0.984 |
Low-risk gambler4 | 0.09 | 0.61 | 1.08 [0.85, 1.35] | 0.539 |
Moderate-risk gambler4 | 0.55 | 4.11 | 1.52 [1.26, 1.82] | < 0.001 |
Problem gambler4 | 1.64 | 11.10 | 2.88 [2.50, 3.25] | < 0.001 |
Loot box purchased | 0.34 | 2.39 | 1.28 [1.05, 1.54] | 0.017 |