Table 1 Convergence tests of the Chebyshev collocation method for representative values of governing parameters.

From: The role of a second diffusing component on the Gill–Rees stability problem

\(N\)

\(R_{S} = 500,\,\gamma = 1,\,Le = 0.5,H = 1\)

\(R_{S} = 1000,\,\gamma = 1,\,Le = 0.5,H = 1\)

\(R_{S} = 500,\,\gamma = 1,\,Le = 0.5,H = 100\)

\(R_{S} = 500,\,\gamma = 10,\,Le = 0.5,H = 1\)

\(R_{S} = 500,\,\gamma = 1,\,Le = 10,H = 1\)

\(R_{Dc}\)

\(a_{c}\)

\(c_{c}\)

\(R_{Dc}\)

\(a_{c}\)

\(c_{c}\)

\(R_{Dc}\)

\(a_{c}\)

\(c_{c}\)

\(R_{Dc}\)

\(a_{c}\)

\(c_{c}\)

\(R_{Dc}\)

\(a_{c}\)

\(c_{c}\)

3

455.15806

0.569400

0

904.16424

0.290263

0

458.54404

1.304487

± 9.624306

445.32753

0.449990

0

127.51952

2.236738

± 89.312561

4

416.98237

0.355783

0

829.30129

0.176603

0

487.79367

1.318743

± 9.639258

397.68067

0.286170

0

347.89680

0.279217

± 18.969205

6

413.72210

0.326146

0

824.03654

0.161680

0

477.92587

1.191875

± 10.015439

396.15973

0.263758

0

300.92250

1.057651

± 58.751588

8

413.59792

0.326841

0

823.73027

0.162086

0

478.10165

1.188263

± 9.954005

395.81154

0.264629

0

342.99234

1.226615

± 41.552617

10

413.56882

0.326854

0

823.67317

0.162092

0

478.12514

1.188081

± 9.952649

395.78540

0.264643

0

348.15457

1.715510

± 11.466295

11

413.57079

0.326850

0

823.67705

0.162091

0

478.12542

1.188079

± 9.952635

395.78690

0.264642

0

352.19606

2.164755

0

12

413.56977

0.326855

0

823.67495

0.162093

0

478.12567

1.188075

± 9.952608

395.78597

0.264645

0

359.16319

2.750712

± 9.071511

13

413.56964

0.326856

0

823.67470

0.162093

0

478.12576

1.188076

± 9.952607

395.78587

0.264646

0

352.87541

0.028388

0

14

413.56969

0.326856

0

823.67480

0.162093

0

478.12578

1.188076

± 9.952605

395.78592

0.264645

0

352.87541

0.028388

0

15

413.56969

0.326856

0

823.67480

0.162093

0

478.12578

1.188076

± 9.952605

395.78592

0.264645

0

352.87541

0.028388

0