Table 10 The lower approximations with \(\beta =0.90, l=1\).

From: Soft ordered double quantitative approximations based three-way decisions and their applications

\(S^{\Diamond }\)

\(\sum \limits _{k=1}^{\left| D\right| }\left( \underline{S_{k}^{\Diamond }}\right) _{{\mathcal {D}}ominan\left( {\mathcal {T}}_{k}^{*},C\right) ^{+}}^{\beta \vee l\left( p\right) }\)

\(\sum \limits _{k=1}^{\left| D\right| }\left( \underline{S_{k}^{\Diamond }}\right) _{{\mathcal {D}}om inan\left( {\mathcal {T}}_{k}^{*},C\right) ^{-}}^{\beta \vee l\left( p\right) }\)

\(S_{1}^{\Diamond }\)

\(\left\{ b_{2},b_{6},b_{7},b_{9},b_{12}\right\} \)

\( \left\{ b_{1},b_{4}\right\} \)

\(S_{2}^{\Diamond }\)

\(\left\{ b_{7},b_{8},b_{9},b_{10},b_{11},b_{12}\right\} \)

\(\left\{ b_{1},b_{2},b_{4},b_{5},b_{8},b_{9},b_{10},b_{11},b_{12}\right\} \)

\(S_{3}^{\Diamond }\)

\(\left\{ b_{6},b_{7},b_{9}\right\} \)

\(\left\{ b_{4}\right\} \)

\(S_{4}^{\Diamond }\)

\(\left\{ b_{7},b_{8},b_{9},b_{12}\right\} \)

\(\left\{ b_{1},b_{4},b_{5},b_{10}\right\} \)