Table 13 Decision table with \(\beta =0.90, l=0\).
From: Soft ordered double quantitative approximations based three-way decisions and their applications
\(\delta _{k}\) | \(\sum \limits _{k=1}^{\left| D\right| }\left( \underline{S_{k}^{\Diamond }}\right) _{{\mathcal {D}} ominan\left( {\mathcal {T}}_{k}^{*},C\right) ^{+}}^{\beta \wedge l\left( p\right) }-\sum \limits _{k=1}^{\left| D\right| }\left( \underline{S_{k}^{\Diamond }}\right) _{{\mathcal {D}}ominan\left( {\mathcal {T}}_{k}^{*},C\right) ^{-}}^{\beta \wedge l\left( p\right) }\) |
|---|---|
\(\delta _{1}\) | \(\left\{ b_{2},b_{6},b_{7},b_{9},b_{12}\right\} \) |
\(\delta _{2}\) | \(\left\{ b_{7}\right\} \) |
\(\delta _{3}\) | \(\left\{ b_{6},b_{7},b_{9}\right\} \) |
\(\delta _{4}\) | \(\left\{ b_{7},b_{8},b_{9},b_{12}\right\} \) |