Table 6 The lower approximations table with \(\beta =0.90, l=1\).

From: Soft ordered double quantitative approximations based three-way decisions and their applications

\(S^{\Diamond }\)

\(\sum \limits _{k=1}^{\left| D\right| } \left( \underline{S_{k}}\right) _{{\mathcal {D}}ominan \left( {\mathcal {T}}_{k}^{*},C\right) ^{+}}^{\beta \vee l \left( o\right) }\)

\(\sum \nolimits _{k=1}^{\left| D\right| } \left( \underline{S_{k}}\right) _{{\mathcal {D}}ominan \left( {\mathcal {T}}_{k}^{*},C\right) ^{-}}^{\beta \vee l\left( o\right) }\)

\(S_{1}^{\Diamond }\)

\(\left\{ b_{1},b_{2},b_{3},b_{4},b_{6},b_{7},b_{9},b_{10},b_{12}\right\} \)

\(\left\{ b_{1},b_{2},b_{3},b_{4},b_{6},b_{12}\right\} \)

\(S_{2}^{\Diamond }\)

\(\left\{ b_{1},b_{2},b_{3},b_{4},b_{5},b_{7},b_{8},b_{9},b_{10},b_{11},b_{12}\right\} \)

\(\left\{ b_{1},b_{2},b_{3},b_{4},b_{5},b_{8},b_{9},b_{10},b_{11},b_{12}\right\} \)

\(S_{3}^{\Diamond }\)

\(\left\{ b_{1},b_{6},b_{7},b_{9},b_{11},b_{12}\right\} \)

\(\left\{ b_{1},b_{4},b_{6},b_{11},b_{12}\right\} \)

\(S_{4}^{\Diamond }\)

\(\left\{ b_{1},b_{2},b_{3},b_{4},b_{5},b_{7},b_{8},b_{9},b_{10},b_{12}\right\} \)

\( \left\{ b_{1},b_{2},b_{3},b_{4},b_{5},b_{8},b_{9},b_{10},b_{12}\right\} \)